CRUD Quick Start#
use postgresql by super user prompt
- connecting to database server by
psql -U postgres
- starting sql with commandline
- creating a user ‘sunce’ by
create user sunce with password 'sunce';
- creating a database ‘people’ with owner ‘sunce’ by
create database people with owner 'sunce';
- quit a session by
\q
now you got a database and a user.
- connecting to database ‘people’ in user ‘sunce’ by
psql people sunce
- creating a table ‘users’ by sql
1
2
3
4
| create table users (
name varchar(128),
email varchar(128)
);
|
- list all table by
\dt
- show the schema of the table ‘users’ by
\d+ users
- run sql from a file in the current directory by
\i lession.sql
- quit to back into terminal by
\q
notie: connecting a database on remote server by psql -h host -p port -U user database
some basic sqls:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
| -- SQL: Create a table
CREATE TABLE users( name VARCHAR(128), email VARCHAR(128) );
-- SQL: Insert a row into a table
INSERT INTO users (name, email) VALUES ('Chuck', 'csev@umich.edu');
INSERT INTO users (name, email) VALUES ('Colleen', 'cvl@umich.edu');
INSERT INTO users (name, email) VALUES ('Ted', 'ted@umich.edu');
INSERT INTO users (name, email) VALUES ('Sally', 'a1@umich.edu');
INSERT INTO users (name, email) VALUES ('Ted', 'ted@umich.edu');
INSERT INTO users (name, email) VALUES ('Kristen', 'kf@umich.edu');
-- SQL: Delete a row in a table based selection criteria
DELETE FROM users WHERE email='ted@umich.edu';
-- SQL: Update a field for rows in a table with Where clause
UPDATE users SET name="Charles" WHERE email='csev@umich.edu';
-- SQL: Select for retrieve all the records
SELECT * FROM users;
-- SQL: Select for retrieve a subset of records with Where clause
SELECT * FROM users WHERE email='csev@umich.edu';
-- SQL: Select for retrieve all the records by sorted in descending or ascending order
SELECT * FROM users ORDER BY email;
SELECT * FROM users ORDER BY name DESC;
-- SQL: Select for retrieve a subset of the records in wildcard match with Where clause using Like operator
SELECT * FROM users WHERE name LIKE '%e%';
SELECT * FROM users ORDER BY email DESC LIMIT 2;
-- SQL: Limit/Offset clause request some rows after skipping some rows, and it happen after the Where/Order BY clause are applied
SELECT * FROM users ORDER BY email OFFSET 1 LIMIT 2;
-- SQL: Count() is a built-in function can retrieve the count of the rows.
SELECT COUNT(*) FROM users;
SELECT COUNT(*) FROM users WHERE email='csev@umich.edu';
-- SQL: Drop a table in a database
DROP TABLE users;
CREATE TABLE users (
id SERIAL,
name VARCHAR(128),
email VARCHAR(128) UNIQUE,
PRIMARY KEY(id)
);
INSERT INTO users (name, email) VALUES ('Chuck', 'csev@umich.edu');
INSERT INTO users (name, email) VALUES ('Colleen', 'cvl@umich.edu');
INSERT INTO users (name, email) VALUES ('Ted', 'ted@umich.edu');
-- Note the SERIAL field auto-supplied
SELECT * from users;
-- Watch for failure due to UNIQUE
INSERT INTO users (name, email) VALUES ('Ted', 'ted@umich.edu');
|
SQL Data Type#
Text field: 8-32 bits of information
- char(n): a entire chunk, short string where the length is known. such as GUID/UUID.
- varchar(n): a variable amount of space depending on the data length.
- text: verying length, such as paragraphs/HTML.
Binary types:
- bytea(n): 8 bits of information.
Integer numbers:
- smallint: -+ 32768.
- integer: 2 billion.
- bigint: $10^{18}$.
Floating Point numbers:
- real: 32 bit, 7 digits of accuracy.
- double precison: 64 bit, 14 digits of accuracy.
- numeric(accuracy, decimal): specified digits of accuracy afyer the decimal point. For Money, using Numeric.
Dates:
- timestamp:64 bit, YYYY-MM-DD HH:MM:SS
- date: YYYY-MM-DD
- time: HH:MM:SS
Key and Index#
key:
- SERIAL: auto increment, primary key.
- primary key(field): primary key.
- unique: logical key, constraints.
- foreign key: a key is pointing to a row in another table.
indexs: Hashs or Trees are the common, shorten the scan
- b-tree index: a tree data structure, keeps data stored and allows searchs. Good for prefix match/sort.
- hash index: a hash function, maps large data sets to smaller data sets, called keys. Hashs are only good for exact match/GUID. such as MD5/SHA1/SHA256/SHA512.
Demo: Musical Track Database#
to get the tables data file:
1
| wget https://www.pg4e.com/tools/sql/library.csv
|
example:
Another One Bites The Dust,Queen,Greatest Hits,55,100,217
Asche Zu Asche,Rammstein,Herzeleid,79,100,231
Beauty School Dropout,Various,Grease,48,100,239
Black Dog,Led Zeppelin,IV,109,100,296
Bring The Boys Back Home,Pink Floyd,The Wall [Disc 2],33,100,87
the structure of the tables:
1
2
3
4
5
6
7
8
9
| create table track_raw(
id serial,
title text,
artist text,
album text,
count integer,
rating integer,
len integer
);
|
load data from the file ’library.csv’ into the ’track_raw’ table using \copy
command:
1
| \copy track_raw(title,artist,album,count,rating,len) from 'library.csv' with delimiter ',' csv;
|
run a query to look for the data:
1
| select * from track_raw order by title limit 3;
|
the result expects to see:
1
2
3
4
5
6
7
8
| => select * from track_raw order by title limit 3;
title | artist | album | count | rating | len
----------------------------+-----------------------+------------------------------------+-------+--------+------
A Boy Named Sue (live) | Johnny Cash | The Legend Of Johnny Cash | 37 | | 226
A Brief History of Packets | IEEE Computer Society | Computing Conversations | | | 1004
Aguas De Marco | Rosa Passos | Natural Wonders Music Sampler 1999 | 407 | | 179
(3 rows)
|
Relational Database Design#
Build a data model: basic rule - Don’t put the same string data in twice, use a relationship instead.
For each “piece of info”:
- Is the column an object, or an attribute of another object?
- Once we difine objects, to define the relationships between objects.
Database Normalization: 3NF
- Don’t repilcate data. Instead, reference data. Point at data.
- Use integers for keys and for references.
- Add a special key column for each table, which you’ll make references to.
On delete choice:
- restrict(default): don’t allow changes that break the constraint.
- cascade: adjust child rows by removing or updating to maintain consistency. it keeps your data model clean.
- set null: set the foreign key columns in the child rows to null. so must to allow your foreign key have a value of null.
Demo: Desigm One-Many Relationship#
An example for splitting the ’track_raw’ table using 3NF:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
| create table artist(
id serial,
name varchar(128) unique,
primary key(id)
);
-- references 'artist_id' to the field 'id' of the 'artist' table.
create table album (
id serial,
title varchar(128) unique,
artist_id integer references artist(id) on delete cascade,
primary key(id)
);
create table genre (
id serial,
name varchar(128) unique,
primary key(id)
);
create table track(
id serial,
title varchar(128),
rating integer,
len integer,
count integer,
album_id integer references album(id) on delete cascade,
genre_id integer references genre(id) on delete cascade,
unique(title, album_id),
primary key(id)
);
|
run \d track
to describe the ’track’ table, it expects to like:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
| music=> \d track
Table "public.track"
Column | Type | Collation | Nullable | Default
----------+------------------------+-----------+----------+-----------------------------------
id | integer | | not null | nextval('track_id_seq'::regclass)
title | character varying(128) | | |
rating | integer | | |
len | integer | | |
count | integer | | |
album_id | integer | | |
genre_id | integer | | |
Indexes:
"track_pkey" PRIMARY KEY, btree (id)
"track_title_album_id_key" UNIQUE CONSTRAINT, btree (title, album_id)
Foreign-key constraints:
"track_album_id_fkey" FOREIGN KEY (album_id) REFERENCES album(id) ON DELETE CASCADE
"track_genre_id_fkey" FOREIGN KEY (genre_id) REFERENCES genre(id) ON DELETE CASCADE
|
it tells us what kind of an index, unique constraint using b-tree, and primary key using b-tree.
now, let’s to insert some data into these tables:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
| INSERT INTO artist (name) VALUES ('Led Zeppelin');
INSERT INTO artist (name) VALUES ('AC/DC');
INSERT INTO album (title, artist_id) VALUES ('Who Made Who', 2);
INSERT INTO album (title, artist_id) VALUES ('IV', 1);
INSERT INTO genre (name) VALUES ('Rock');
INSERT INTO genre (name) VALUES ('Metal');
INSERT INTO track (title, rating, len, count, album_id, genre_id)
VALUES ('Black Dog', 5, 297, 0, 2, 1) ;
INSERT INTO track (title, rating, len, count, album_id, genre_id)
VALUES ('Stairway', 5, 482, 0, 2, 1) ;
INSERT INTO track (title, rating, len, count, album_id, genre_id)
VALUES ('About to Rock', 5, 313, 0, 1, 2) ;
INSERT INTO track (title, rating, len, count, album_id, genre_id)
VALUES ('Who Made Who', 5, 207, 0, 1, 2) ;
|
Join Across Tables#
Join…on…
Using join (also called ‘inner join’) make the connection between the tables with an ON clause.
1
2
3
4
5
6
| select album.id, album.title, artist_id, artist.name
from album
join artist on album.artist_id = artist.id;
-- same as
select album.id, album.title, artist_id, artist.name
from album, artist where album.artist_id = artist.id;
|
the records expects to like:
1
2
3
4
| id | title | artist_id | name
----+--------------+-----------+--------------
1 | Who Made Who | 2 | AC/DC
2 | IV | 1 | Led Zeppelin
|
Left (outer) join…on
1
2
3
| select album.id, album.title, artist_id, artist.name
from album
left join artist on album.artist_id = artist.id;
|
Cross join…
we do can make all connection:
1
2
3
| select track.id, track.title, track.genre_id, genre.id, genre.name
from track
cross join genre;
|
run it above, then we retrieve all connecttions:
1
2
3
4
5
6
7
8
9
10
11
| id | title | genre_id | id | name
----+---------------+----------+----+-------
1 | Black Dog | 1 | 1 | Rock
2 | Stairway | 1 | 1 | Rock
3 | About to Rock | 2 | 1 | Rock
4 | Who Made Who | 2 | 1 | Rock
1 | Black Dog | 1 | 2 | Metal
2 | Stairway | 1 | 2 | Metal
3 | About to Rock | 2 | 2 | Metal
4 | Who Made Who | 2 | 2 | Metal
(8 rows)
|
Demo: Design Many-Many Relationship#
start with a fresh database: student-course.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
| create table student(
id serial,
name varchar(128),
email varchar(128),
primary key(id),
unique(email)
);
create table course (
id serial,
title varchar(128),
primary key(id),
unique(title)
);
create table member_of(
student_id integer references student(id) on delete cascade,
course_id integer references course(id) on delete cascade,
role integer, -- 0: student, 1: teacher
primary key(student_id, course_id)
);
INSERT INTO student (name, email) VALUES ('Jane', 'jane@tsugi.org');
INSERT INTO student (name, email) VALUES ('Ed', 'ed@tsugi.org');
INSERT INTO student (name, email) VALUES ('Sue', 'sue@tsugi.org');
INSERT INTO course (title) VALUES ('Python');
INSERT INTO course (title) VALUES ('SQL');
INSERT INTO course (title) VALUES ('PHP');
INSERT INTO member_of (student_id, course_id, role) VALUES (1, 1, 1);
INSERT INTO member_of (student_id, course_id, role) VALUES (2, 1, 0);
INSERT INTO member_of (student_id, course_id, role) VALUES (3, 1, 0);
INSERT INTO member_of (student_id, course_id, role) VALUES (1, 2, 0);
INSERT INTO member_of (student_id, course_id, role) VALUES (2, 2, 1);
INSERT INTO member_of (student_id, course_id, role) VALUES (2, 3, 1);
INSERT INTO member_of (student_id, course_id, role) VALUES (3, 3, 0);
|
do a complexity query:
1
2
3
4
5
| select student.name, member_of.role, course.title
from student
join member_of on member_of.student_id = student.id
join course on member_of.course_id = course.id
order by course.title, member_of.role desc, student.id;
|
the result expects to like:
1
2
3
4
5
6
7
8
9
10
| name | role | title
------+------+--------
Ed | 1 | PHP
Sue | 0 | PHP
Jane | 1 | Python
Ed | 0 | Python
Sue | 0 | Python
Ed | 1 | SQL
Jane | 0 | SQL
(7 rows)
|